Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Emerg Microbes Infect ; 12(1): 2185467, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2286131

ABSTRACT

Replicating SARS-CoV-2 has been shown to degrade HLA class I on target cells to evade the cytotoxic T-cell (CTL) response. HLA-I downregulation can be sensed by NK cells to unleash killer cell immunoglobulin-like receptor (KIR)-mediated self-inhibition by the cognate HLA-I ligands. Here, we investigated the impact of HLA and KIR genotypes and HLA-KIR combinations on COVID-19 outcome. We found that the peptide affinities of HLA alleles were not correlated with COVID-19 severity. The predicted poor binders for SARS-CoV-2 peptides belong to HLA-B subtypes that encode KIR ligands, including Bw4 and C1 (introduced by B*46:01), which have a small F pocket and cannot accommodate SARS-CoV-2 CTL epitopes. However, HLA-Bw4 weak binders were beneficial for COVID-19 outcome, and individuals lacking the HLA-Bw4 motif were at higher risk for serious illness from COVID-19. The presence of the HLA-Bw4 and KIR3DL1 combination had a 58.8% lower risk of developing severe COVID-19 (OR = 0.412, 95% CI = 0.187-0.904, p = 0.02). This suggests that HLA-Bw4 alleles that impair their ability to load SARS-CoV-2 peptides will become targets for NK-mediated destruction. Thus, we proposed that the synergistic responsiveness of CTLs and NK cells can efficiently control SARS-CoV-2 infection and replication, and NK-cell-mediated anti-SARS-CoV-2 immune responses being mostly involved in severe infection when the level of ORF8 is high enough to degrade HLA-I. The HLA-Bw4/KIR3DL1 genotype may be particularly important for East Asians undergoing COVID-19 who are enriched in HLA-Bw4-inhibitory KIR interactions and carry a high frequency of HLA-Bw4 alleles that bind poorly to coronavirus peptides.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , HLA-B Antigens/genetics , Killer Cells, Natural , Receptors, KIR3DL1/genetics
2.
mBio ; 12(5): e0137221, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1462899

ABSTRACT

Interleukin6 (IL-6) is a key driver of hyperinflammation in COVID-19, and its level strongly correlates with disease progression. To investigate whether variability in COVID-19 severity partially results from differential IL-6 expression, functional single-nucleotide polymorphisms (SNPs) of IL-6 were determined in Chinese COVID-19 patients with mild or severe illness. An Asian-common IL-6 haplotype defined by promoter SNP rs1800796 and intronic SNPs rs1524107 and rs2066992 correlated with COVID-19 severity. Homozygote carriers of C-T-T variant haplotype were at lower risk of developing severe symptoms (odds ratio, 0.256; 95% confidence interval, 0.088 to 0.739; P = 0.007). This protective haplotype was associated with lower levels of IL-6 and its antisense long noncoding RNA IL-6-AS1 by cis-expression quantitative trait loci analysis. The differences in expression resulted from the disturbance of stimulus-dependent bidirectional transcription of the IL-6/IL-6-AS1 locus by the polymorphisms. The protective rs2066992-T allele disrupted a conserved CTCF-binding locus at the enhancer elements of IL-6-AS1, which transcribed antisense to IL-6 and induces IL-6 expression in inflammatory responses. As a result, carriers of the protective allele had significantly reduced IL-6-AS1 expression and attenuated IL-6 induction in response to acute inflammatory stimuli and viral infection. Intriguingly, this low-producing variant that is endemic to present-day Asia was found in early humans who had inhabited mainland Asia since ∼40,000 years ago but not in other ancient humans, such as Neanderthals and Denisovans. The present study suggests that an individual's IL-6 genotype underlies COVID-19 outcome and may be used to guide IL-6 blockade therapy in Asian patients. IMPORTANCE Overproduction of cytokine interleukin-6 (IL-6) is a hallmark of severe COVID-19 and is believed to play a critical role in exacerbating the excessive inflammatory response. Polymorphisms in IL-6 account for the variability of IL-6 expression and disparities in infectious diseases, but its contribution to the clinical presentation of COVID-19 has not been reported. Here, we investigated IL-6 polymorphisms in severe and mild cases of COVID-19 in a Chinese population. The variant haplotype C-T-T, represented by rs1800796, rs1524107, and rs2066992 at the IL-6 locus, was reduced in patients with severe illness; in contrast, carriers of the wild-type haplotype G-C-G had higher risk of severe illness. Mechanistically, the protective variant haplotype lost CTCF binding at the IL-6 intron and responded poorly to inflammatory stimuli, which may protect the carriers from hyperinflammation in response to acute SARS-CoV-2 infection. These results point out the possibility that IL-6 genotypes underlie the differential viral virulence during the outbreak of COVID-19. The risk loci we identified may serve as a genetic marker to screen high-risk COVID-19 patients.


Subject(s)
COVID-19/metabolism , COVID-19/prevention & control , Interleukin-6/metabolism , A549 Cells , Genotype , Haplotypes/genetics , HeLa Cells , Humans , Interleukin-6/genetics , Polymorphism, Single Nucleotide/genetics , Real-Time Polymerase Chain Reaction , Software
SELECTION OF CITATIONS
SEARCH DETAIL